
CE384: Database Design
Maryam Ramezani
Sharif University of Technology
maryam.ramezani@sharif.edu

Integrity, Assertion
Procedure, Function, and 
Trigger



❑ An integrity constraint (IC) describes conditions that every legal instance of a 

relation must satisfy.
○ Inserts/deletes/updates that violate IC’s are disallowed.

○ Can be used to ensure application semantics (e.g., sid is a key), or prevent inconsistencies (e.g., sname has 

to be a string, age must be < 200).

❑ Types of IC’s:  
○ domain constraints and NOT NULL constraints, 

○ primary key constraints and foreign key constraints, 

○ general constraints.

Maryam Ramezani Database Design 2



❑ The IC NOT NULL disallows NULL values for a specified attribute.
CREATE TABLE Students

 (sid VARCHAR(20) PRIMARY KEY, 

  name VARCHAR(20) NOT NULL, 

  login VARCHAR(10) NOT NULL,

  age INTEGER,

  gpa REAL);  

 

❑ Primary key attributes are implicitly NOT NULL.

Maryam Ramezani Database Design 3



 Attribute-based CHECK
▪ defined in the declaration of an attribute,

▪ activated on insertion to the corresponding table or update of attribute.

 Tuple-based CHECK
▪ defined in the declaration of a table, 

▪ activated on insertion to the corresponding table or update of tuple.

 Assertion
▪ defined independently from any table,

▪ activated on any modification of any table mentioned in the assertion.

Maryam Ramezani Database Design 4



 Can use general SQL queries to express constraints.

 Much more powerful than domain and key constraints.

 Constraints can be named.

Maryam Ramezani Database Design 5



Maryam Ramezani Database Design

 Attribute-based CHECK constraint is part of an attribute definition.

 Is checked whenever a tuple gets a new value for that attribute (INSERT or UPDATE). 
Violating modifications are rejected.

 CHECK constraint can contain an SQL query referencing other attributes (of the same or 
other tables), if their relations are mentioned in the FROM clause.

 CHECK constraint is not activated if other attributes mentioned get new values.

6



Maryam Ramezani Database Design 7

❑ Attribute-based CHECK constraints are most often used to restrict allowable 
attribute values.

CREATE TABLE   Sailors

 ( sid  INTEGER PRIMARY KEY,

 sname  VARCHAR(10),

 rating  INTEGER

  CHECK  ( rating >= 1 

  AND rating <= 10),

 age  REAL);



Maryam Ramezani Database Design

 Tuple-based CHECK constraints can be used to constrain multiple attribute values 
within a table.

 Condition can be anything that can appear in a WHERE clause.

CREATE TABLE   Sailors

 ( sid  INTEGER PRIMARY KEY,

 sname  VARCHAR(10),

 previousRating  INTEGER,

 currentRating  INTEGER,

 age  REAL,

    CHECK  (currentRating >= previousRating)

   );

8



Maryam Ramezani Database Design

 Condition can be anything allowed in a WHERE clause.

 Violating modifications are rejected.

 Components include: 
▪ a constraint name, 

▪ followed by CHECK, 

▪ followed by a condition

9



Maryam Ramezani Database Design

 You can also check a combination of attribute values at INSERT/UPDATE time 

10

o Only Joe’s restaurant can sell food for more than $5:

 CREATE TABLE Sells (

  restaurant  CHAR(20),s

  food  CHAR(20),

  price REAL,

  CHECK (restaurant = ’Joe’’s restaurant’    

   OR

     price <= 5.00)

 

);



Maryam Ramezani Database Design

CREATE ASSERTION assertionName

  CHECK ( condition );

No restaurant can charge more than $5 on average for food.

11



Maryam Ramezani Database Design

 General constraints: constraints that do not fit in the basic SQL categories 
Mechanism: CREAT ASSERTION

▪ Components include: 

▪ a constraint name, 

▪ followed by CHECK, 

▪ followed by a condition

12



Maryam Ramezani Database Design

 “The salary of an employee must not be greater than the salary of the manager of 
the department that the employee works for’’

13

CREAT ASSERTION SALARY_CONSTRAINT

CHECK (NOT EXISTS (SELECT *

   FROM EMPLOYEE E, EMPLOYEE M, 

   DEPARTMENT D

   WHERE E.SALARY > M.SALARY AND

        E.DNO=D.NUMBER AND  

   D.MGRSSN=M.SSN))

constraint name, 
CHECK, 
condition



Maryam Ramezani Database Design

 Specify a query that violates the condition; include inside a NOT EXISTS clause.

 Query result must be empty.

▪ if the query result is not empty, the assertion has been violated

14



Maryam Ramezani Database Design

customer(name, addr, phone)    

restaurant(name, addr, license)

food(name, nationality)

There cannot be more restaurants than customers.

15

CREATE ASSERTION FewRestaurant CHECK (

 (SELECT COUNT (*) FROM restaurant) 

 <=

 (SELECT COUNT (*) FROM customer)

);



Maryam Ramezani Database Design

In theory, every ASSERTION is checked after every INSERT/ DELETE/UPDATE.

In practice, the DBMS only has to check sometimes:

❑ Adding a customer can’t violate Fewrestaurants.

❑ Removing a restaurant can’t violate NoExpensiverestaurants.

❑ Lowering a food price can’t violate NoExpensiverestaurants.

But is the DBMS smart enough to figure this out?

Postgres: SQL Error [0A000]: ERROR: CREATE ASSERTION is not yet implemented

Assertion is not implemented in vast majority of DBMS.

16



Maryam Ramezani Database Design 17

You can help your not-so-smart DBMS by using 
TRIGGERs instead of ASSERTIONs.

A trigger is an ECA rule:

When Event occurs
If Condition doesn’t hold
Then do Action

E.g., an INSERT / DELETE / UPDATE 
to relation R

Any SQL Boolean 
condition

Any SQL statements



Maryam Ramezani Database Design

❑ You can allow your users to update their views --- but you catch their updates and 

rewrite them to behave the way you want, avoiding view anomalies.

❑ You can encode new strategies for handling violations of constraints, different from 

what the DBMS offers.

❑ When the event happens, the system will check the constraint, and  if satisfied, will 

perform the action.

❑ NOTE: triggers may cause cascading effects. 

❑ Triggers not part of SQL2 but included in SQL3… however, database vendors did not 

wait for standards with triggers!

18



Maryam Ramezani Database Design

 A procedure is a module performing one or more actions; it does not need to 
return any values. 

 The syntax for creating a procedure is as follows:

CREATE OR REPLACE PROCEDURE name

 [(parameter[, parameter, ...])]

AS

 [local declarations]

BEGIN

 executable statements

[EXCEPTION

 exception handlers]

END [name];

19



Maryam Ramezani Database Design

 Local variables (DECLARE)
 RETURN values for FUNCTION
 Assign variables with SET
 Branches and loops:

▪ IF (condition) THEN statements;
ELSEIF (condition) statements;
… ELSE statements; END IF;

▪ LOOP statements; END LOOP
 Queries can be parts of expressions
 Can use cursors naturally without “EXEC SQL”

20



Maryam Ramezani Database Design

❑ A procedure may have 0 to many parameters.

❑ Every procedure has two parts: 
○ The header portion, which comes before AS (sometimes you will see IS—they are interchangeable), 

keyword (this contains the procedure name and the parameter list),
○ The body, which is everything after the AS keyword.

❑ The word REPLACE is optional. When the word REPLACE is not used in the header of the procedure, 
in order to change the code in the procedure, it must be dropped first and then re-created.

❑ Parameters are the means to pass values to and from the calling environment to the server. These 
are the values that will be processed or returned via the execution of the procedure.

❑ There are three types of parameters:

○ IN, OUT, and IN OUT. Modes specify whether the parameter passed is read in or a receptacle for what 

comes out. [In Postgres we don’t have “out” parameter]

21



Maryam Ramezani Database Design

 Type of parameters

22



Maryam Ramezani Database Design

❑ A stored procedure does not return a value. You cannot use the return statement 

with a value inside a store procedure like this:
○ return expression;

❑ However, you can use the return statement without the expression to stop the 

stored procedure immediately:
○ return;

❑ If you want to return a value from a stored procedure, you can use parameters with 

the inout mode.

23



Maryam Ramezani Database Design 24

drop table if exists accounts;

create table accounts (

    id int generated by default as identity,

    name varchar(100) not null,

    balance dec(15,2) not null,

    primary key(id)

);

insert into accounts(name,balance)

values('Bob',10000);

insert into accounts(name,balance)

values('Alice',10000);

create or replace procedure transfer

(sender int, receiver int, amount dec )

language plpgsql 

as 

$$ 

begin 

-- subtracting the amount from the sender’s 

account 

 update accounts

 set balance = balance – amount

 where id = sender;

-- adding the amount to the receiver's 

account update accounts

 set balance = balance + amount 

 where id = receiver; 

commit;

 end;

$$; 



Maryam Ramezani Database Design

 Stored procedure do not have to be written in SQL:

CREATE PROCEDURE TopSailors(IN num INTEGER)

LANGUAGE JAVA

EXTERNAL NAME “file:///c:/storedProcs/rank.jar”

25



Maryam Ramezani Database Design

 Call stored_procedure_name(argument_list);

26



Maryam Ramezani Database Design

 A cursor is a database object that allows you to traverse the result set of a query one 
row at a time.

 Cursors can be useful when you deal with large result sets or when you need to 
process rows sequentially.

27

1. First, declare a cursor.
2. Next, open the cursor.
3. Then, fetch rows from the result 
set into a record or a variable list.
4. After that, process the fetched 
row and exit the loop if there is no 
more row to fetch.
5. Finally, close the cursor.



Maryam Ramezani Database Design

 Functions are a type of stored code and are very similar to procedures.
 The significant difference is that a function is a PL/SQL block that returns a single 

value. 
 Functions can accept one, many, or no parameters, but a function must have a 

return clause in the executable section of the function.
 The datatype of the return value must be declared in the header of the function.
 A function is not a stand-alone executable in the way that a procedure is: It must be 

used in some context. You can think of it as a sentence fragment.
 A function has output that needs to be assigned to a variable, or it can be used in a 

SELECT statement.

28



Maryam Ramezani Database Design

 The function does not necessarily have to have any parameters, but it must have a 
RETURN value declared in the header, and it must return values for all the varying 
possible execution streams.

 The RETURN statement does not have to appear as the last line of the main 
execution section, and there may be more than one RETURN statement (there 
should be a RETURN statement for each exception). 

 A function may have IN, OUT, or IN OUT parameters.  but you rarely see anything 
except IN parameters. 

29



Maryam Ramezani Database Design 30

create [or replace] function 

function_name(param_list)

   returns return_type 

   language plpgsql

  as

$$

declare 

   -- variable declaration

begin

   -- logic

end;

$$;

❑ First, specify the name of the function after the 

create function keywords. To replace the existing 

function, use the or replace option.

❑ Then, list out parameters surrounded by 

parentheses after the function name. A function 

can have zero or more parameters.

❑ Next, define the datatype of the returned value 

after the returns keyword.

❑ After that, use the language plpgsql to define the 

procedural language of the function. Note that 

PostgreSQL supports many languages including 

plpgsql.

❑ Finally, place a block in the dollar-quoted string 

constant to define the function body.



Maryam Ramezani Database Design 31

creates a function that 
returns the 
number films whose 
length between the 
len_from and len_to 
parameters 



Maryam Ramezani Database Design 32

 Using positional notation

 Using named notation

 Using mixed notation



Maryam Ramezani Database Design 33

 In mode:



Maryam Ramezani Database Design 34

 Out mode:



Maryam Ramezani Database Design 35

 InOut mode:



Maryam Ramezani Database Design

❑ List all defined functions:

select * from pg_proc p

left join pg_namespace n on p.pronamespace = n.oid

left join pg_language l on p.prolang = l.oid

left join pg_type t on t.oid = p.prorettype 

where n.nspname not in ('pg_catalog', 'information_schema')

order by n.nspname , p.proname

36



Maryam Ramezani Database Design

 If someone inserts an unknown food into Sells(restaurant,food,price)add it to 
food(name,nationality) with a NULL nationality.

37



Maryam Ramezani Database Design

❑ CREATE TRIGGER name

❑ CREATE OR REPLACE TRIGGER name

○ Useful when there is a trigger with that name and you want to modify the trigger.

❑ Two different triggers on a table?

38



Maryam Ramezani Database Design

 Take one element from each of the three columns:

39



Maryam Ramezani Database Design 40

 You can execute a trigger once per modified row, or once per triggering statement.

 Statement-level triggers execute once for each SQL statement that triggers them, regardless 
of how many rows are modified.

 Row level triggers are executed once for each modified row.

The default

Request explicitly by including

FOR EACH ROW



Maryam Ramezani Database Design

 A statement trigger fires once per triggering event and regardless of whether any 
rows are modified by the insert, update, or delete event. 

 A row trigger fires once for each row affected by the triggering event. If no rows are 
affected, the trigger does not fire.

 [FOR EACH {ROW | STATEMENT}]

41



Maryam Ramezani Database Design

Your condition & action can refer to the rows being inserted / deleted/updated.

❑ INSERT statements imply a new row (for row-level) or new set of rows (for 

statement-level).

❑ DELETE implies an old row (row-level) or table (statement-level).

❑ UPDATE implies both.

Syntax:  

REFERENCING [NEW OLD][ROW TABLE] AS name

42

Pick one Pick one



Evaluate the condition on 
the instance after the 

event

Maryam Ramezani Database Design

 Any boolean-valued Condition is ok in WHEN Condition.

43

No condition

BEFORE 

AFTER 

INSTEAD OF

INSERT

DELETE

UPDATE

UPDATE       OF attribute

Evaluate the condition 
on the instance before 

the event

ON relationName



Maryam Ramezani Database Design

 The Action is a sequence of SQL statements (modifications).
 Surround them by BEGIN . . . END if there is more than one.

44



Maryam Ramezani Database Design

Remember restaurants that raise the price of a food by > $1.

45



Maryam Ramezani Database Design

Triggers are great for implementing view updates.

46



Maryam Ramezani Database Design

 How can I insert a tuple into a table that doesn’t exist?

Employee(ssn, name, department, project, salary)

47

CREATE VIEW  Developers AS

   SELECT ssn,name, project

   FROM  Employee

   WHERE department = “Development”

INSERT INTO  Developers   

VALUES(12,“Joe”, “Optimizer”)

INSERT INTO  Employee 

VALUES(12, “Joe”, NULL, “Optimizer”, NULL)

If we make the
following insertion: 

It becomes:

This must be

“Development”

We cannot insert into Developers --- it is a view.
But we can use an INSTEAD OF trigger to turn a 
(name, project) triple into an insertion of a tuple 
(name, `Development’, project) to Employee. 



Maryam Ramezani Database Design

CREATE TRIGGER AllowInsert

 INSTEAD OF INSERT ON Developers

 REFERENCING NEW ROW AS new

 FOR EACH ROW

 BEGIN

  INSERT INTO Empolyees(name, department, project) 

 VALUES(new.name, `Development’, new.project);

 END;

48



Maryam Ramezani Database Design

 A trigger to compare an employee’s salary to his/her supervisor during insert or 
update operations:

CREATE TRIGGER INFORM_SUPERVISOR

BEFORE INSERT OR UPDATE OF

 SALARY, SUPERVISOR_SSN ON EMPLOYEE

 FOR EACH ROW

  WHEN

  (NEW.SALARY> (SELECT SALARY FROM EMPLOYEE

                WHERE SSN=NEW.SUPERVISOR_SSN))

  INFORM_SUPERVISOR (NEW.SUPERVISOR_SSN,NEW.SSN);

49



Maryam Ramezani Database Design

CREATE TRIGGER    NoLowerPrices

AFTER UPDATE OF  price  ON Product

REFERENCING 

     OLD  AS OldTuple

     NEW  AS  NewTuple

FOR EACH ROW

WHEN (OldTuple.price > NewTuple.price)

     UPDATE  Product

     SET  price = OldTuple.price

     WHERE  name = NewTuple.name

50



Maryam Ramezani Database Design

emp(dno…), dept(dept#, …)

❑ Whenever we insert employees tuples, make sure that their dno’s exist in Dept.

CREATE TRIGGER  deptExistTrig

AFTER INSERT ON emp

REFERENCING 

     OLD_TABLE  AS OldStuff

     NEW_TABLE AS  NewStuff

WHEN (EXSITS (SELECT * FROM NewStuff 

    WHERE dno NOT IN 

        (SELECT dept# FROM dept)))

DELETE FROM NewStuff 

    WHERE dno NOT IN

        (SELECT dept# FROM dept));

51



Maryam Ramezani Database Design

CREATE TRIGGER  Bad-trigger

AFTER UPDATE OF price IN Product

REFERENCING  OLD AS  OldTuple

             NEW AS NewTuple

FOR EACH ROW

WHEN   (NewTuple.price > 50)

        UPDATE  Product

        SET  price = NewTuple.price * 2

        WHERE  name = NewTuple.name

52



Maryam Ramezani Database Design 53

STT1 (STID, NAME, MAJOR, LEVEL)

STT2 (STID, DEPT, BDATE, NATID)

CREATE  VIEW  CE-STT 

 AS  SELECT  STID,  NAME,  MAJOR

 FROM  STT1  JOIN  STT2

 WHERE  DEPT=‘CE’  AND  LEVEL =‘BS’

CREATE TRIGGER INS-VIEW-TRIG

 INSTEAD  OF   INSERT   ON  CE-STT

 REFERENCING   NEW  AS NST

 FOR EACH ROW

 BEGIN

        INSERT  INTO  STT1  VALUES  ( NST.STID, NST.NAME, 

                                             NST.MAJOR,  ‘BS’)

        INSERT  INTO  STT2  VALUES  ( NST.STID, ‘CE’, NULL, NULL) 

 END



Maryam Ramezani Database Design

 Checking the TOTAL_SAL of department is sum of the salary of employees.

EMPL (EID, ENAME, SALARY, DNO)

DEPT (DNO, DNAME, TOTAL_SAL, MANAGER)

(R1) CREATE TRIGGER TOTALSAL1

 AFTER  INSERT ON EMPL

 FOR EACH ROW

 WHEN (NEW.DNO IS NOT NULL)

      UPDATE DEPT

         SET  TOTAL_SAL = TOTAL_SAL + NEW.SALARY

         WHERE DNO = NEW.DNO

(R2) CREATE TRIGGER TOTALSAL2

 AFTER  UPDATE OF SALARY ON EMPL

 FOR EACH ROW

 WHEN (NEW.DNO IS NOT NULL)

      UPDATE DEPT

         SET  TOTAL_SAL = TOTAL_SAL + NEW.SALARY – OLD.SALARY

         WHERE DNO = NEW.DNO

54



Maryam Ramezani Database Design

❑ Checking the TOTAL_SAL of department is sum of the salary of employees.

EMPL (EID, ENAME, SALARY, DNO)

DEPT (DNO, DNAME, TOTAL_SAL, MANAGER)

(R3) CREATE TRIGGER TOTALSAL3

 AFTER  UPDATE OF DNO ON EMPL

 FOR EACH ROW

 BEGIN

      UPDATE DEPT

         SET  TOTAL_SAL = TOTAL_SAL + NEW.SALARY

         WHERE DNO = NEW.DNO

      UPDATE DEPT

         SET  TOTAL_SAL = TOTAL_SAL – OLD.SALARY

         WHERE DNO = OLD.DNO

 END

      

(R4) CREATE TRIGGER TOTALSAL4

 AFTER  DELETE ON EMPL

 FOR EACH ROW

 WHEN (OLD.DNO IS NOT NULL)

      UPDATE DEPT

         SET   TOTAL_SAL = TOTAL_SAL – OLD.SALARY

         WHERE  DNO = OLD.DNO 

55


	Slide 1
	Slide 2: Integrity Constraints
	Slide 3: Not-Null Constraints
	Slide 4: General Constraints
	Slide 5: General Constraints
	Slide 6: Attribute-based CHECK
	Slide 7: Attribute-based CHECK
	Slide 8: Tuple-based CHECK
	Slide 9: Assertions
	Slide 10: Row-Based Checks
	Slide 11: For more Complex Constraints
	Slide 12: Constraints as Assertions
	Slide 13: Assertions: An Example
	Slide 14: Using General Assertions
	Slide 15: Assertion
	Slide 16: Note
	Slide 17: Trigger
	Slide 18: You can use triggers to code very complex stuff
	Slide 19: Procedures
	Slide 20: Main Procedure Constructs 
	Slide 21: Procedures
	Slide 22: Procedures
	Slide 23: Procedures
	Slide 24: Procedures Example
	Slide 25: Note
	Slide 26: Call a Procedure
	Slide 27: PL/pgSQL Cursor
	Slide 28: Function
	Slide 29: Function
	Slide 30: Function
	Slide 31: Example
	Slide 32: Call a Function
	Slide 33: Functions with different type of parameters
	Slide 34: Functions with different type of parameters
	Slide 35: Functions with different type of parameters
	Slide 36: Function
	Slide 37: Trigger Example
	Slide 38: Syntax for Naming the Trigger
	Slide 39: Syntax for Describing the Condition
	Slide 40: Execute Trigger
	Slide 41: Execute Trigger
	Slide 42: DML
	Slide 43: DML
	Slide 44: Action as a Sequence
	Slide 45: Example
	Slide 46: Note
	Slide 47: Example: Updating Views
	Slide 48: Allow insertions into Developers
	Slide 49: SQL Triggers: An Example
	Slide 50: Example: Row Level Trigger
	Slide 51: Statement Level Trigger 
	Slide 52: Bad Things Can Happen
	Slide 53: Insert on View Example
	Slide 54: Check - Example
	Slide 55: Check - Example

